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ABSTRACT

The effects of initial geometric and material property imperfections on the non-linear J
dynamic response of cylindrical shells subjected to an underwater explosion was investigated.
Finite element and boundary element programs were used to perform the analysis of the
dynamic response of these shells. The geometric and material modal imperfections were
introduced into the finite element models. The dynamic response and deformation of the
cylinder were then compared for each of the eight modal imperfection cases to the dynamic
response of a perfect cylindrical model. The modal imperfection distribution of the combined
geometric and material imperfections are then introduced into an aluminum model and
compared to experimental results obtained from underwater explosion testing. This analysis
shows that a more accurate prediction of the damage and dynamic response is achieved by

introducing these imperfection distributions into the numerical analysis.
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I. INTRODUCTION

The objective of this thesis is to investigate the effects of initial geometric and
material property imperfections on the dynamic response of cylindrical shells subjected to an
underwater explosion. The use of cylindrical shells in the design of modern structures has
grown at an exponential rate since the end of World War I. The demand for these structures
will continue to increase in the future due to their excellent weight critical mechanical
properties. These properties help optimize the structural designs used in many modern weight
sensitive technologies such as in the aerospace and defense related industries. The primary
problem with many cylindrical shell structures has been the discrepancy between the
magnitudes of analytically predicted and experimentally obtained buckling loads. These
buckling loads can commonly vary by 50 percent. An explanation for these variations is the
influence of boundary conditions, effects of pre-buckling due to edge constraints, or the
effects of initial imperfections. Initial imperfections have been recognized as the major
source in these inaccuracies.

Imperfections can be generalized into three types; shell geometry, material properties
and loading distribution. The first type is shell geometry which has two components, radial
and axial imperfections. Radial and axial imperfections are the small deviations in the radial
and axial directions generated by manufacturing or fabrication processes. Manufacturing
processes, like forging and turning, can introduce longitudinal curvatures and axial variation
in shell thickness. Research in radial imperfections has been previously investigated by
Kirkpatrick (1989) and Hooker (1993). The material property is the second type of
imperfection. These are caused by slight variations in the density, modulus of elasticity,
tangential hardening modulus or yield strength over the surface of the material. Material
testing apparatus can also attribute to slight variations in these material properties. The
various fabrication processes can also produce porosity or effect the surface finish. All of
theses factors affect the material properties and hence the structural dynamic response.
Loading distributions are the final type of imperfection. The loading distribution is a function

of the explosive type, pulse geometry and contact area on impact.




The USA/DYNA3D computer codes were used to provide the numerical analysis for
the shell responses. VEC/DYNA3D (Hallquist and Stillman 1990) was developed at
Lawrence Livermore National Laboratory and is an explicit three-dimensional finite element
program that has been effectively used in analyzing large deformation dynamic response of
mechanical structures. The equations of motion are integrated in time by using a central
difference method. The Underwater Shock Analysis, USA ( DeRuntz 1989) is a boundary
element code that is based on the Doubly Asymptotic Approximatibn (DAA). This allows
for the accurate and efficient numerical analysis of the complex fluid-structure interaction of
the underwater shock phenomena. The linkage between the two codes was developed in the
early 1990's and has provided acceptable results of dynamic responses of cylindrical shells.

The finite element model for the VEC/DYNA3D program uses LS-INGRID
(Hallquist and Stillman 1985), a pre-processor that provides flexibility in modeling of
geometric shapes. The model for the dynamic analysis of the cylindrical shell utilizes a three-
dimensional ring stiffened finite cylindrical model provided in Figure 1. The model uses

21"
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Figure 1. Dimensions of the INGRID Model




the Belytschko-Lin-Tsay 4 node shell element due to its computational efficiency in the
DYNAS3D program. The post-processor is provided by LS-TAURUS (Hallquist and Stillman
1990). It provides graphical output in the form of contour, fringe plots and time histories for
a wide variety of output parameters such as stress, strain, displacements, velocities and
accelerations.

In the remaining of this thesis the modal imperfection distribution for the initial
geometric and material imperfections is discussed. An algorithm is generated and explained
for radial, axial, material and combined cases. These modal imperfections are then
introduced into the finite element mesh algorithm. Each of eight separate modal imperfection
models is analyzed and compared to the dynamic response of a perfect model. A parametric
study of axial and material property variations is performed to analyze their contributions to
the total dynamic response. Then an optimized selection of the geometric and material
modal imperfections is compared to experimentally obtained results from an underwater

explosion.







II. IMPERFECTIONS

Initial Imperfections have slight variations in the assumed structural shape and have
been recognized as a major source of inaccuracy in the predications of dynamic buckling of ’
cylindrical shells. Imperfections can be categorized as either shell geometry, material
property or loading distribution. ~ The aerospace industry driven by weight critical, low
margin of safety axially compressed cylinders has been investigating the effects of these
imperfections in aluminum since the early 1960's . Several studies including Arbocz (1982)
have been investigating the effects of general imperfections on the buckling of cylindrical
shells. Arbocz has published an imperfection data bank that he notes should help improve
design criteria for buckling of thin shells. This data bank complies results of imperfection
sensitivity analysis for various materials. The imperfection sensitivity analysis physically
measures the slight variations in the radial and axial directions. These are ultimately the
most precise way to determine the imperfections in a cylindrical shell but cannot always be
accomplished because of cost and schedule constraints.

A more cost effective solution to this cylindrical shell buckling problem is to integrate
a more realistic initial imperfection into the analytical analysis. In finite element modeling
the initial imperfections can be introduced into the finite element mesh algorithm. Each initial
imperfection or a summation of modal imperfections will have a different modal imperfection

distribution.

A. GEOMETRIC IMPERFECTIONS
The first category of imperfection is shell geometry. As stated above this will
significantly contribute to both radial and axial imperfections. These radial and axial
imperfections can be introduced into the mesh generator algorithm by modifying the
geometric location of the particular node points in the finite element model.
For radial imperfections the numerical expression used was determined by
Kirkpatrick (1989). He found that the dynamic response of a cylindrical structure subject to

a blast loading more closely agreed to experimental data by introducing the initial modal




imperfections in the cylindrical structure. He used a summation of modal imperfections

expressed as the cosine series in Eq. (1).
SRO) - >, A, « cos(mb + ¢,) 1)

where 3R is the radial imperfection, 6 is the angular position, N is the maximum modal
contribution in the radial direction, A_ is the modal amplitude. and ¢, is a random modal
phase shift. The random modal phase shift has been determined reasonably in many shells
without welded seams. An empirical form for the modal amplitude is expressed as shown

in Eq. (2).

A -

n

X
pr @
where A, is the modal amplitude of the n® modal imperfection, n is the mode number and X
and r are coefficients used to fit the data for the shells of a given construction. Kirkpatrick

accurately modeled the modal amplitude in Eq. (3) and Eq. (4) as a percentage of the shell

thickness for mode numbers less than six and greater than seven.

A, = 0.05:h n<é 3)
2+h
A3 n>7 @

The second type of geometric imperfection to be investigated are axial imperfections.

Axial imperfections according to Kirkpatrick were neglected in his research due to the small




variations along the axial direction as compared to the radial. This thesis models the axial
imperfections with a similar model as the radial imperfection. The axial imperfection uses
the same summation of modal imperfection expressed as the cosine series Eq. (5) but as a
function of axial distance. In accordance to Kirkpatricks, small variations along the axial

directions a reduced axial modal amplitude in Eq. (6) and Eq. (7) has been used.

5A(V)=Em=1 Am*cos(m*Z*n*y + (I)m) (5)

A - -} « (0.05-h) m<6 ©
1 2.

A = = =« n>7

Where 0 A is the axial imperfection, y is the axial position, M is the maximum modal
contribution in the axial direction, A, is the modal amplitude and ¢,, is a random modal
phase shift.

1. Three-Dimensional Mesh Plots

Manufacturing, machining, or fabrication processes can contribute to shell geometry
imperfections. To incorporate these processes into the imperfection algorithm, Arbocz
(1982) conducted imperfection sensitivity analysis of various fabricated cylinders and
recorded their radial and axial variations. This data provides a three-dimensional plots of
circumferential angle, axial distance versus radial imperfection. The mesh plots have
characteristic imperfection distribution that can be associated with a type of fabrication

process. Three-dimensional mesh plots clearly show periodic oscillations in radial and




axial directions. These magnitudes and geometric shapes of these plots are a function of
modal amplitude and random phase shift. These three-dimensional mesh plots in this thesis

are created by the initial modal imperfection introduced into the mesh algorithm.

2. Initial Modal Imperfection

Previous research by Hooker (1993) implemented a sixth modal and a summation of
the first ten modal imperfections in the radial direction. His data showed that the final
deformation or damage pattern is a function of the introduced initial modal imperfection. He
also concluded that the use of another modal imperfection would have only changed the
shape of the final deformation and not the final results. The summation of the first ten modal
imperfection is a reasonable assumption because of what Arbocz (1982) determined. He
stated that imperfections have characteristic distributions that include decreasing modal
amplitudes with increasing mode number. This indicates that the lower modal imperfections
dominate the deformation patterns.

An axial view of the initial sixth modal imperfection pattern with a modal amplitude
of 0.05*h scaled by a factor of 100 is shown in Figure 2. The sixth modal imperfection
clearly shows a symmetric six crest and trough pattern. As explained by Hooker the mode 6
imperfection was initially chosen for its ease of identif’ying its distinctive geometric pattern.
The sixth modal imperfection with random phase shift also scaled by a factor of 100 is shown
in Figure 3. It has the similar pattern but rotated by a random phase angle. With the
summation of each of the first ten mode shapes the random phase provides a significantly
different deformation pattern than the non- random case. This in turn will create a different
dynamic response and final deformation pattern.

The final deformation pattern can be readily observed from the deformation plot.
The dynamic response can be directly determined from analysis of the hoop and axial strain
data. Lindberg (1987) states that circumferential (hoop) strain or specifically as its related
to compressive hoop stress is the major cause of buckling in cylindrical shells. He further
defines buckling as the resultant of the growth of initial imperfection in the structure in

response to the applied load.




Figure 3. Initial Mode 6 Imperfection With Random Phase Shift A=0.05*h,
scaled up 100X




B. MATERIAL IMPERFECTIONS

The second category of imperfection is material variation. In the USA/DYNA3D
code the material properties that are adjustable are density, Poisson's ratio, yield strength,
tangential hardening modulus, and modulus of elasticity. The modulus of elasticity was
selected for initial investigation. The reasoning was that the modulus of elasticity would
affect the mechanical properties more in the elastic region of the response than the other
parameters. The material property variation was accomplished by generating a random
modulus between plus and minus 5 percent of its tabulated value. This was then inserted into
the mesh algorithm at each element of the mesh.

A subsequent material property analysis repeated this procedure for density, yield
strength, and tangential hardening. Each factor was analyzed independently and then in
combination. The Poisson's ratio was not analyzed due to the exceptionally small changes
in numerical values. A three dimensional mesh plot was not produced of material modal

imperfection because there where no coordinate changes associated with the finite element

mesh algorithm.

C. LOADING DISTRIBUTIONS

The final source of imperfections is loading distributions. At this time the loading
distribution phenomena is not well understood. In this report the effects of loading
distributions are neglected because the shock wave created by the underwater explosion is

modeled as a plane wave by the USA/DYNA3D code.
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ITI. THREE DIMENSIONAL MODEL

The following is the initial three-dimensional model used to generate a radial and axial
imperfection distribution using the combined boundary element and finite element program
USA/DYNA3D. A three-dimensional ring stiffened finite cylindrical model is shown in Figure 4.
Its dimensions as shown previously are 21 inches in length, six inch radius with two 1/8 inch thick
stiffeners equally spaced seven inches apart along the axial direction. This three-dimensional finite
cylindrical model has 40 elements around the circumference, and 22 elements in the axial
direction with an element length of 0.96 inches. ~The radius-to-thickness ratio for thin-walled
cylinder approximation is 24. The shell and stiffener material are modeled as mild steel, a
kinematic/isotropic elastic-plastic material. The shell thickness is 0.06 inches. The endplate
material is 1/4 inch HY-100 steel. The material properties used for the numerical models are

provided in Table 1.

Mild Steel HY-100
Density (Ibm/f%) 490.0 490.0
Poisson's Ratio 0.3 0.3
Yield Strength (kst) 32.0 108.0
Young's Modulus  (psi) 2.9x107 2.9x107
Tangential Hardening
Modulus (psi) 5.1x10* 5.02x10*

Table 1. Material Properties

A. PERFECT CYLINDER MODEL
The perfect cylinder model is the original model developed by the LS-INGRID

preprocessor. The input files are provided in Appendix A. It was subjected to an underwater
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shock wave modeled as a plane wave with a peak amplitude of 2175 psi and a decay constant
of 0.3625 msec. This approximation (Shin and Geers 1988) uses a exponential pressure
relationship and is only good for pressure greater than about 1/3 of the peak value . This
peak pressure pulse is generated from a 60 IBS charge of HBX-1 at a 10 foot depth and a
standoff distance of 30 feet. The attack geometry is provided in Figure 5. The pressure
profile, Figure 6 and cavitation curve Figure 7, for an HBX-1 explosive are provided for
reference. For these particular parameters the cavitation curve shows that the target is on
the boundary of the lower cavitation curve and hence could be subjected to bulk cavitation
effects. The 10 foot underwater depth is also less than the gas bubble radius of 15.8 feet. This
allows the gas bubble to vent to the surface and not migrate toward the target. If the gas
bubble were not to vent to the surface a significant release of energy ( 47% of the explosive
energy) would result in formible second pulse striking the target. These two factors could
possibly provide a source for numerical error to the predicted dynamic response if compared

to experimental data.

>
ya

[N W VA WA WA
\\\\\\\\\\\\\\\\\\\T\
11 AEER

oy —x

T
’a

T
| ot

Figure 4. Three Dimensional Ring Stiffened Cylindrical Model
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Cavitation Curve for HBX-1 ; 60 Ibs; 10 ft
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Figure 7. Cavitation Curve: HBX-1 60 Pound Charge, 10 Foot Depth

1. Perfect Model Full (PMF)
The Perfect Model Full is the original model which has 1360 wet elements and 1442

nodes. It has no modal imperfections introduced into its mesh algorithm and subsequently
its modal imperfection distribution plot would be a flat plane.

The deformation analysis was conducted using axial and longitudinal deformation
plots, von Mises stress contour and effective plastic strain plots. Axial and hoop strain time
histories are provided for selected points of interest. Tabulated data for maximum von Mises

and effective plastic strain are provided in Tables 2 and 3 in Appendix D.
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The axial deformation plots, Figure 8 shows the time progression of the shock
induced pulse for four time frames; 0.0384, 0.4896, 0.9881, and 1.9888 msec. This axial
view has the endplates and stiffeners removed for enhanced visual recognition. There is an
appearance of light radial deformation and some slight crumpling or wrinkling at a few peaks ’
with an increase in time. The longitudinal deformation plots, Figure 9 for the same times
shows the deformation as the shock progresses through the cylinder. The explosive charge
is positioned perpendicular to the longitudinal axis. During the early time period after
impact the deformation looks symmetric and has a general appearance to that of an
accordion with a slight pinching near the two stiffeners and end plates. The deformation
also appears to have little dependence on the radial angle of impact with the exception of the
backside of the cylinder which has a couple small dishes between the stiffeners. The shell
deformation near the stiffeners and end plates provide the most distinguishing feature as far
as amplitude of the peaks or pinching that forms the accordion appearance.

The effective plastic strain contour plot, Figure 10 clearly shows the greater strains
at the two ends front centerline.  This coincides with Fox (1992) determination that the
most severe deformation would occur at the locations near the end and backside of the
cylinder. This results in the greater plastic strains at the ends and backside centerline possibly
due to two phenomena. The first is the large inertia forces applied to the cylindrical shell
created by the mass of the end plates. Second, the thickness of the end plates are significantly
stiffer and they lack flexibility causing the thinner/weaker shell material to deform in the
response to the applied force.

The longitudinal and circumferential (hoop) strain time histories at the front of the

cylinder midpoint centerline will be compared with specific imperfect distributions in later

sections.
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B. IMPERFECT CYLINDER MODEL

The imperfect cylinder model was generated in the same manner as the perfect model
with the exception of the introduction of modal imperfections into the mesh algorithm. The
actual imperfection distribution that is introduced compared to the perfect model varies
between zero and 0.3 percent of the radius to the that particular element. This thesis
analyzes a combination of geometric and material modal imperfections. The eight different

modal imperfection models analyzed by this thesis are:

1. Radial Imperfections (Rimp)

2. Axial Imperfections (Aimp)

3. Radial and Axial Imperfections (Imp)

4. Radial Imperfections with Random Phase Shift (Rimpp)

5. Axial Imperfections with Random Phase Shift (Aimpp)

6. Radial and Axial Imperfections with Random Phase Shift (Impp)

7. Material Imperfections (Mtl5)

8. Material, Radial and Axial Imperfections with Random Phase Shift (Mtlimpp)

Each of these models was subjected to the same underwater shock wave as the
perfect model. These models use the radial, axial, and imperfection sensitivity analysis as
outlined in the Imperfection section to introduce the modal imperfection distribution. These
calculations are performed by a fortran program for geometric imperfections provided in
Appendix B. |

The geometric imperfection fortran program requires the input of the number of nodes
on the surface of the cylinder. It then reads the DYNA3D input file ingrido and calculates a
specific radius for each of the inputed nodes from their global X, Y and Z positions. For the
random phase case a different random number generator was used for both radial and axial
models to determine random phase angle. Then the summation of the cosine series for each
modal imperfection was performed. For material imperfections a similar fortran program

with a random number generator was used and is provided in Appendix C. In this program
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each element has an associated material that is modified according to the random number
generator. A summary of interesting axial and longitudinal deformation plots will be provided

in the summary of results section.

1. Radial Imperfections (Rimp)

The radial imperfection model was the first model to be analyzed. It has only the
radial imperfection introduced into the mesh algorithm and is essentially the same model used
by Hooker (1993). The initial modal imperfection distribution introduced into the cylinder
and the resultant three-dimensional mesh or carpet plot are provided in Figure 11. The top
plot is an axial view of the cylinder with a modal imperfection amplitude magnified by a
factor of 50. The bottom plot is the three-dimensional mesh or carpet plot and its modal
imperfection amplitude is magnified by a factor of 100. The periodic oscillations are readily
observed in the circumferential direction in the mesh plot.

Deformation analysis was conducted using axial and longitudinal deformation plots,
von Mises stress contour and effective plastic strain plots. Axial and hoop strain time
histories are provided for selected points of interest.

The axial deformation plot, Figure 12 shows a time progression from 0.0384,
0.4896, 0.9881, and 1.9888 msec. There appears an increase in the periodic crumpling with
what seems to be ten peaks around the circumference of the cylinder. The ten peaks are
probably the resultant of the summation of the first ten modal imperfections. There are two
relatively sharp peaks symmetric on either side of the axis of charge between 1 and 2 msec.
These two peaks look remarkably similar to the original deformation pattern. The sharpness
of the peaks could signified that the plastic deformation for the mesh size is too large and
probably can not be accurately determined. The longitudinal deformation plot, Figure 13
shows for the same times the deformation as the shock induced pulse progresses through the
cylinder. The early time looks similar to pinching and accordion of the perfect model but
visual difference are more readily apparent by 0.5 msec. These differences are the
appearance of a frontside twin ridge dishing effect between the stiffeners and a greater

magnitude of deformation than for the perfect case. Significant dishing, crumpling and
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buckling are readily observable by 1 msec. This is probably the onset of failure.

A comparison of the maximum von Mises stresses between Rimp and model perfect
show about 2 percent greater difference for radial imperfection within the first msec after
impact. The tabulated data for maximum von Mises stresses are provided in Table 2 in
Appendix D.

The effective plastic strain contour plot also shows a similar appearance to the model
perfect. These plastic strains are also located on the frontside of the cylinder at the far ends
and backside centerline. As noted before this is probably due to the deformation created by
the effect that Fox (1992) described during the dynamic response of the cylinder. A
comparison of the effective plastic strain between Rimp and model perfect shows about 11
percent greater difference for radial imperfection within the first msec after impact. The
effective plastic strain data is provided in Table 3 in Appendix D.

The circumferential and longitudinal strain time histories at the front of the cylinder
midpoint centerline, element 370 are compared to the perfect model in Figure 14. The hoop
and axial strains are greater for the Radial imperfection case than for the perfect case in both

plots.

21




scaled up SOX

(a) Initial Modal Imperfection distribution, axial view,

[y

(ur) suoroayiadug

(b) Three Dimensional Mesh Plot of Cylindrical Surface, scaled up 100X

Figure 11. Radial Imperfection Distribution (Rimp): (a) Initial Modal Imperfection

axial view (b) Three Dimensional Mesh Plot of Cylindrical Surface
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2. Axial Imperfections (Aimp)

The axial imperfection model was the second model to be analyzed. It has only the
axial imperfection introduced into the mesh algorithm. The initial modal imperfection
distribution introduced into the cylinder is a function of axial direction and is at a reduced, 1/4
the modal amplitude of the radial case. The three-dimensional mesh plot scaled by a factor
of 100 and initial axial modal distribution scaled by a factor of 200 are provided in Figure
15. The bottom three-dimensional carpet plot has distinguishing ripples running along the
axial direction. As can be seen in the top longitudinal view of the deformation plot these
ripples were cause by a very slight oscillation along the axial direction.

Deformation analysis was conducted using axial and longitudinal deformation plots,
von Mises stress contour and effective plastic strain plots. Axial and hoop strain time
histories are provided for selected points of interest.

The axial deformation plot in Figure 16 shows a time progression from 0.0384,
0.4896, 0.9881, and 1.9888 msec. These plots have a strong resemblance to the model
perfect case. They have the same light radial deformation and some slight crumpling at a few
peaks with increasing time. The longitudinal deformation plot is shown in Figure 17. This
deformation plot shows the shock induced pulse progresses through the cylinder as a function
of time. The plot looks similar to the perfect model. The accordion appearance is the most
distinguishable feature present.

The difference in maximum von Mises stresses and the effective plastic strain contour
plots through the first 3 msec are essentially negligible. The data for the maximum von Mises
and effective plastic strain is provided in Table 2 and Table 3 in Appendix D.

The circumferential and longitudinal strain time histories at the front of the cylinder
midpoint centerline are shown in Figure 18. The two graphs clearly show the negligible
difference through the first msec and no more than one percent difference for the following

twoO msec.
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Figure 15. Axial Imperfection Distribution (Aimp): (a) Initial Modal Imperfection
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3. Radial and Axial Imperfections (Imp)

The radial and axial imperfection model was the third model to be analyzed. It
incorporates the combined radial and axial imperfection into the mesh algorithm. The initial
modal imperfections distribution introduced into the cylinder and the resultant three-
dimensional mesh plot are provided in Figure 19. The top plot shows the axial view of the
modal imperfection scaled by a factor of 50. There is essentially no distinguishable effect by
the axial modal imperfection ripples in this plot. The bottom of the figure shows the mesh
plot scaled by a factor of 25. The plots are a superposition of the radial peaks or oscillations
and the axial ripples. The initial modal imperfection clearly shows the distinguishable twin
peak symmetric with the shock axis.

Deformation analysis was conducted using axial and longitudinal deformation plots,
von Mises stress contour and effective plastic strain plots. Axial and hoop strain time
histories are provided for selected points of interest.

The axial deformation plot, Figure 20 shows a time progression from 0.0384,
0.4896, 0.9881, and 1.9888 msec. These plots have a appearance of the Radial imperfections
with the exception of the magnitude. They have the same periodic crumpling with peaks
around the circumference of the cylinder. These peaks form relatively sharp points beyond
1 to 2 msec. The final deformation pattern also has the similar appearance to the original
modal imperfection. Figure 21 shows the longitudinal deformation plots. They also have
similar appearances to the Rimp. It has the similar appearance of a dishing effect between the
stiffeners with a greater magnitude of deformation than for the Rimp case.

A comparison of the maximum von Mises stresses between Imp and Rimp shows
negligible difference for radial and axial imperfection within the first msec after impact. The
difference between Imp and model Perfect is a little greater than 4 percent. This data is
provided in Table 2 in Appendix D.

A comparison of the effective plastic strains between Imp and Rimp also shows
only a slightly greater difference of 0.2 percent for radial imperfection within the first msec.
after impact. This data is provided in Table 3 in Appendix D.

The circumferential and longitudinal strain time histories at the front midpoint
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centerline, element 370 are compared to the perfect model in Figure 22. The hoop and axial
strains are greater for the radial and axial imperfection case than for the perfect case in both
plots. The effective plastic strain at the front centerline right end and backside centerline are

shown in Figure 23. In both cases the Imp model has greater plastic strain.
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4. Radial Imperfections with Random Phase Shift (Rimpp)

The radial imperfection with random phase shift was the fourth model to be analyzed.
This model has radial and random phase shift combined modal imperfection introduced into
the mesh algorithm. The random phase shift assumption is reasonable for cylinders without
welded seams. The initial modal imperfections distribution introduced into the cylinder and
the resultant three-dimensional mesh plot are provided in Figure 24. The top plot is the axial
view of the cylinder with a the modal imperfection scaled by a factor of 50. The random
nature of the oscillations is visibly different from the periodic nature of the non-random case.
The bottom plot shows the three-dimensional mesh plot with its modal amplitude scaled by
a factor of 50. The oscillations are not periodic as in the non-random case.

Deformation analysis was conducted using axial and longitudinal deformation plots,
von Mises stress contour and effective plastic strain plots. Axial and hoop strain time
histories are provided for selected points of interest.

The axial deformation plot, Figure 25 shows a time progression from 0.0384,
0.4896, 0.9881, and 1.9888 msec. The general deformation appearance is different from the
non-random models, for example the dominant twin peaks. There appears to be an increase
in the periodic crumpling with peaks around the circumference of the cylinder as compared
to the non-random Rimp. This deformation is also progfessing in relation to the initial modal
imperfection. The longitudinal deformation plot in Figure 26 shows the deformation as the
shock induced pulse progresses through the cylinder. There is an greater appearance of a
single ridge dishing effect on the front between the stiffeners than for the other
cases.

The maximum von Mises stresses as compared to model Perfect and Rimp are within
1.1and 1.5 percent respectively after the first msec. The tabulated data is provided in Table
2 in Appendix D.

The effective plastic strain contour plot is similar in appearance to the model perfect
but are about 12 percent greater within the first msec after impact. The data is provided in

Table 3 in Appendix D.
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The circumferential and longitudinal strain time histories at the front of the cylinder
midpoint centerline are provided in Figure 27. These plots show a significant difference in

magnitude after one msec than compared to the perfect model.
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(b) Three Dimensional Mesh Plot of Cylindrical Surface, scaled up 50X

Figure 24. Radial Imperfections with Random Phase Shift (Rimpp): (a) Initial
Modal Imperfection Distribution, axial view (b) Three Dimensional Mesh Plot of

Cylindrical Surface
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5. Axial Imperfections with Random Phase Shift (Aimpp)

The axial imperfection with random phase shift was the fifth model to be analyzed.
This model has the axial and random phase shift combined modal imperfection introduced
into the mesh algorithm. The initial modal imperfections distribution introduced into the
cylinder have a smooth oscillatory appearance to that of Aimp. The resultant three-
dimensional mesh plot and longitudinal plot are provided in Figure 28. The top longitudinal
plot is scaled by a factor of 100 and has a smoother oscillation along the axial direction. The
bottom mesh plot which is scaled by a factor of 25 clearly exhibits this smoother oscillatory
appearance of the initial modal imperfection.

Deformation analysis was conducted using axial and longitudinal deformation plots,
von Mises stress contour and effective plastic strain plots. Axial and hoop strain time
histories are provided for selected points of interest.

The axial deformation plot, Figure 29 shows a time progression from 0.0384,
0.4896, 0.9881, and 1.9888 msec. There appears slight periodic crumpling with a couple of
peaks around the circumference of the cylinder similar to the model perfect case. This
* deformation is also progressing in relation to the initial modal imperfection. The longitudinal
deformation plot in Figure 30 shows the deformation as the shock induced pulse progresses
through the cylinder. It also has the general appearance of the model perfect case.

The maximum von Mises stresses and effective plastic strain contour plots have
essentially negligible difference to those of the perfect model. Both the maximum von Mises
stress and effective plastic strain data are provided in Tables 2 and 3 in Appendix D.

The circumferential and longitudinal strain time histories at the front of the cylinder
midpoint centerline are shown in Figure 31 versus the perfect model. The two graphs clearly

show the similarity or negligible difference between the two models.
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Figure 28. Axial Imperfections with Random Phase Shift (Aimpp): (a) Initial
Modal Imperfection Distribution, long view (b) Three Dimensional Mesh of

Cylindrical Surface
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6. Radial and Axial Imperfections with Random Phase Shift (Impp)

The sixth modal imperfection to be analyzed was the radial and axial imperfection
with random phase shift. This model has these combined modal imperfections introduced
into the mesh algorithm. The initial modal imperfection distribution introduced into the
cylinder and the resultant three-dimensional mesh plot are provided in Figure 32. The top
plot show the superposition of both modal imperfections scaled by a factor 50. The bottom
mesh plot is scaled by a factor of 50 and clearly shows the superposition of the random radial
oscillations and the smooth axial oscillatory motion. |

Deformation analysis was conducted using axial and longitudinal deformation plots,
von Mises stress contour and effective plastic strain plots. Axial and hoop strain time
histories are provided for selected points of interest.

The axial deformation plot in Figure 33 shows a time progression from 0.0384,
0.4896, 0.9881, and 1.9888 msec. There appears an increase in the periodic crumpling with
peaks around the circumference of the cylinder. This deformation is also progressing in
" relation to the initial modal imperfection. The longitudinal deformation plot in Figure 34
shows the deformation as the shock induced pulse progresses thru the cylinder. There is an
greater appearance of a single ridge dishing effect between the stiffeners than for the Rimpp
case.

A comparison of the maximum von Mises stresses between Impp and Rimpp shows
negligible difference for radial and axial imperfection with random phase shift within the first
msec after impact. A comparison between Impp and Imp shows a slightly greater thana 1.5
percent difference. These values are provided in Table 2 in Appendix D. |

The effective plastic strain contour plot has the typical appearance to the model
Perfect. A comparison between Impp and model Perfect show about 15 percent greater
difference. In contrast the difference between Impp and Imp are only slightly greater than 1.5
percent difference. These values are provided in Table 3 of Appendix D.

The circumferential and longitudinal strain time histories at the front of the cylinder
midpoint centerline, element 370 are compared to the perfect model in Figure 35. The hoop

strain is greater for the Impp case than for the perfect case. The axial strain is slightly less
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than the perfect model. This could be contributed to the random phase shift assumption that
was used in determining the initial modal imperfection. The effective plastic strain at the front
centerline right end and backside centerline are shown in Figure 36. In both cases the Impp ’

model has greater plastic strain as compared to the Rimpp case.
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Imperfections (in)

(b) Three Dimensional Mesh Plot of Cylindrical Surface, scaled up 50X

-

Figure 32. Radial and Axial Imperfections with Random Phase Shift (Impp):
(a) Initial Modal Imperfection Distribution, axial view (b) Three Dimensional
Mesh Plot of Cylindrical Surface
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7. Material Imperfections

The material imperfection was the seventh model to be analyzed. This model used
only the material imperfection introduced into the mesh algorithm. This incorporates a
random plus or minus 2.5 or 5 percent difference in the elastic modulus. There is no initial
modal imperfection distribution plot as in the other imperfection cases.

Deformation analysis was conducted using axial and longitudinal deformation plots,
von Mises stress contour and effective plastic strain plots. Axial and hoop strain time
histories are provided for selected points of interest.

The axial deformation plots are not provided for the time progression from 0.0384,
0.4896, 0.9881, and 1.9888 msec because of their similarity in appearance of the plots to
those of the perfect model. The longitudinal deformation plots are also not provided but
have that distinctive pinching around the stiffeners and the general smooth accordion
appearance of the perfect model.

The effective plastic strain contour plots are essentially identical to the model perfect.

Maximum von Mises stresses and effective plastic strain data are similar to the third digit.
The tabulated data is provided in Tables 2 and 3 in Appendix D.

Tt can be concluded that the effect of variations in elastic modulus are negligible in this

analysis since the underwater explosion pressure pﬁlse creates stresses that exceed the

materials elastic limit within 0.5 msec after impact.

8. Material, Radial and Axial Imperfections with Random Phase Shift
(Mtlimpp)

The eighth and final model to be analyze was the material, radial and axial
imperfection with random phase shift. This model has the combined material, radial and axial
imperfection with random phase shift modal imperfection introduced into the mesh
algorithm. The initial modal imperfections distribution introduced into the cylinder is similar
to the radial and axial imperfection with random phase shift (Impp) case. The mesh plot is

not provided but would be similar to the Impp case.

Deformation analysis was conducted using axial and longitudinal deformation plots,
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von Mises stress contour and effective plastic strain plots. Axial and hoop strain time
histories are provided for selected points of interest.

The axial deformation plot in Figure 37 shows a time progression from 0.0384,
0.4896, 0.9881, and 1.9888 msec. They have the similar periodic crumpling with sharp
peaks around the circumference of the cylinder that is distinguishable from the Impp. This
deformation is also progressing in relation to the initial modal imperfection. The longitudinal
deformation plot in Figure 38 for the same times show the deformation as the shock induced
pulse progresses through the cylinder. It also has the appearance of the single ridge dishing
effect between the stiffeners as the Impp case.

The maximum von Mises stresses and effective plastic strains are essentially the same
as in the Impp and hence the difference is negligible. Tabulated data is provided in Tables 2
and 3 in the Appendix D.

The circumferential and longitudinal strain time histories at the front of the cylinder

midpoint centerline are similar to the Impp case and will not be provided.

57




Wave

2
2
=

%!

%4 o
s =
2=

ko)
3) N
3] -
b <
= 5]
N =
= . 9
= = o
= = 2
< 3 =
< «“ -
2 = =
= 7 3‘3
2
2
o 3
2 =
a =
€
D
w —
= =
— S
< -
= 3
) by <
o= S 2
(= <= a
= @ =
== S 2
> b A
_ [
[N =
4 b
E 2

Figure 37. Material, Radial, and Axial Imperfections with Random Phase Shift:
Axial Deformation plots for 0.0384, 0.4896, 0.9888, and 1.9888 msec.
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C. SUMMARY OF RESULTS

The results of comparing the various modal imperfection distributions clearly shows
the dominating effect of the radial imperfection in both the with phase and without random
phase shift cases. Figure 39 compares the four major longitudinal deformation plots for the
Perfect , Radial and Axial Imperfection (Imp), Radial Imperfection with random phase shift
(Rimpp), and Radial and Axial Imperfection with random phase shift (Impp). These cases
were chosen to show the variety of deformation patterns achieved. This figure clearly shows
the different modal distribution between the perfect and imperfection with random phase and
no phase shift cases. The Axial imperfection with and without phase were neglected due to
negligible visual difference to the model Perfect.

The perfect model has its distinguishing pinching and overall accordion appearance.
This is in sharp contrast to the Imp case which shows the pronounced frontside twin ridge
dishing effect between the stiffeners. The Radial Imperfection with random phase shift
(Rimpp) has a noticeably different single ridge dishing from the Radial and Axial
Imperfection (Imp) case. As noted before this is resultant of the introduction of the initial
imperfection distribution. The final deformation plot, Radial and Axial Imperfection with
random phase shift (Impp) is provided to show the slight to negligible difference that the axial
imperfection contributed to crumpling or buckling.

Figure 40 compares the four major axial deformation plots for the same cases as
above. The model Perfect axial deformation plots shows only two small indentations on the
top and bottom of the cylinder. This is also in sharp contrast to the Radial and Axial
Imperfection (Imp) appearance of periodic crumpling with ten peaks around the
circumference of the cylinder. The difference between Radial Imperfection with random
phase shift (Rimpp) and Radial and Axial Imperfection with random phase shift (Impp)
show no significant change in the amplitude of deformation but does show the distinguishable
single peak along the shock axis. It is theorized that the summation of the modal imperfection
causes the magnitude of these peaks and valleys.

The results for the material imperfection of five percent change of elastic modulus had

little to negligible effect on the deformation or dynamic response.
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D. PARAMETRIC STUDY OF AXIAL IMPERFECTIONS

In the initial axial imperfection modal distribution the modal amplitude was assumed
to be 1/4 of that of the radial imperfection. The axial imperfection case used the similar
cosine series as the radial imperfection but as a function of axial distance and multiplied by ’
the axial modal amplitude. The Axial Imperfections (Aimp) and Axial Imperfections with
random phase shift (Aimpp) models as determined by deformation plots and dynamic
responses provided negligible effect. This section will perform a parametric study using four
different axial modal amplitudes. The four are 1/4, 1/2, 3/4 and 1.0 of the radial modal
amplitudes. These results were then compared to the model Perfect and an optimized axial
modal amplitude was selected to be integrated into the combined modal imperfection
distribution.

The axial modal amplitude for each case was implemented into the mesh algorithm in
the same procedure as for the other models. Deformation and dynamic response was
conducted in the same manner with von Mises stress contour plots, effective plastic strain
plots and axial and longitudinal deformation plots. Data for von Mises maximum stresses and
maximum effective plastic strains are provided in Tables 4 and 5 in Appendix D.

The deformation plots provided no new or interesting visual differences. They will
not be provided due to the similarity of model Perfect, Aimp and Aimpp cases.

The comparison of the maximum von Mises stresses for the four axial modal
amplitudes and model perfect shows negligible, 0.3 percent difference after the first msec.

The comparison of the effective plastic strain for the same models shows a 1.3 percent
difference for the 1/4 and 3/4 models and a 1.6 percent difference for the 1/2 and 1 models.
Figure 41 is the circumferential an longitudinal strain time histories at the front of the cylinder
midpoint centerline. This clearly shows the significant difference of the first axial modal
amplitude. The optimum choice was selected as the 1/2 axial modal amplitude. This was
selected because it has a greater effective plastic strain than the 1/4 and 3/4 cases but not as
great as the effect of the 1.0 or fourth modal amplitude. The final modal amplitude of 1.0
would affect the dynamic response on the order of the radial imperfections and this was

determined to be unreasonable.
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E. MATERIAL PROPERTY IMPERFECTION ANALYSIS

In the analysis of the material property imperfection the elastic modulus was initially
investigated. These results concluded that a variation of elastic modulus had negligible effect
on the deformation response. This is due to the fact that the material's elastic limit was
exceeded shortly after impact and the dynamic response was mostly in the plastic region.
There are other material property imperfections that should affect the nonlinear dynamic
response like variation in yield strength and tangential hardening modulus. This section
analyzed independently the effects of variations on material density, yield strength, and
tangential hardening on the deformation and dynamic response. The optimized material
properties were then used with the optimized axial modal amplitude in the combined modal
imperfection distribution that will be compared to experimental data.

As in the material imperfection model, a fortran program was used to modify these
two parameters by 5 percent of their average values. These values of the modified material
properties were implemented into the mesh generator algorithm as in the preceding models

and the resulting deformation and dynamic response was analyzed.

1. Variation of Material Density

The variation of material density was the first case to be analyzed in the material
property imperfection analysis. It used the standard 5 percent variation in density as
described above.

Deformation and dynamic response analysis was conducted in the same manner as
previous models with von Mises contour plots, effective plastic strain plots and axial and
longitudinal deformation plots.

The comparison of the variation of material density shows a similar appearance in
both axial and longitudinal plots at 1.9888 msec to that of the elastic modulus case. The only
major difference in the axial plot of Figure 42, is that the density plot has an extra peak along
the axis of impact. In the longitudinal plot of Figure 43 this is observed as slight dishing
between the two major stiffeners.

The maximum von Mises and effective plastic strains for the variation of material
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density provided reasonable values in both cases. The difference between material density and
model Perfect is within 0.5 percent after the first msec. The effective plastic strain
comparison between material density and model Perfect is within 2.2 percent after the first
msec. Data for von Mises maximum stresses and maximum effective plastic strains are

provided in Tables 4 and 5 in Appendix D.

2. Variation of Material Yield Strength

The variation in material yield strength was the second case to be analyzed. In this
case two separate 5 and 2.5 percent difference models were analyzed.

Deformation and dynamic response analysis was conducted in the same manner with
von Mises contour plots, effective plastic strain plots and axial and longitudinal deformation
plots.

The axial deformation plot in Figure 42 at 1.988 msec shows the comparison of the
variation of yield strength for the 5.0 percent case. This plot clearly shows a similar peak in
front as with the density case but also shows a distinctive formation of multiple peaks
surrounding the backside of the cylinder. The longitudinal plot is provided in Figure 43 at
1.988 msec. It shows the similar slight dishing between the two major stiffeners in the front
as seen with the density case. The longitudinal plot does not clearly show the backside of
the cylinder which would have multiple dishes due to various peaks surrounding the backside.

The comparison of the maximum von Mises stresses and effective plastic strains for
the 5 percent different yield strength case proved to be on the order of the 1/2 axial modal
amplitude case. In the maximum von Mises stresses this was on order of 2 percent greater
than model Perfect within the first msec. The maximum effective plastic strain were also
within 2 percent of the model Perfect within the first msec. The second 2.5 percent case was
investigated and provided maximum von Mises stresses and effective plastic strains with
almost negligible difference between model Perfect. Data for the maximum von Mises

stresses and maximum effective plastic strains are provided in Tables 4 and 5 in Appendix D.
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3. Variation in Material Tangential Hardening Modulus

The variation of material tangential hardening modulus was the final case to be
analyzed in the material property imperfection analysis. In this case there were two separate
5and 7.5 percent difference tangential hardening modulus cases analyzed.

Deformation and dynamic response analysis was conducted in the same manner as
previous models with von Mises contour plots, effective plastic strain plots and axial and
longitudinal deformation plots.

The final axial deformation plot in Figure 42 shows the comparison of the 5.0
percent variation of tangential hardening modulus. This plot clearly shows the similarity in
appearance to the elastic modulus case at 1.9888 msec after impact. In the longitudinal plot
of Figure 43, it has that distinctive pinching around the stiffeners and the general smooth
accordion appearance of the perfect model.

The comparison of the maximum von Mises stresses and effective plastic strains for
the 5 percent tangential hardening proved to be less sensitive than the yield strength case.
" There was negligible difference compared to model Perfect until the stresses reached their
yield strength. Even after reaching yield strength this parameter had a minimum effect on
the maximum stresses or plastic strains. This affected the dynamic response within 1.5
percent of model Perfect within the first msec. A 7.5 percent different of tangential hardening
case was analyzed. It provided no more than 1/4 percent greater values than the 5 percent
case. Data for von Mises maximum stresses and maximum effective plastic strains are

provided in Tables 4 and 5 in Appendix D.
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IV. NUMERICAL AND EXPERIMENTAL RESULTS

A. UNDERWATER EXPLOSION TEST

An underwater explosion test was conducted at Dynamic Test;mg Incorporated
(DTI), in Rustburg, Virginia in August 1991 in support of UNDEX research by Nelson
(1992). The test facility is located in a quarry where the water depth is approximately 130
feet. This water depth reduces the possibility of bottom reflection affecting the test data.

A compressive shock was produced by a 60 pound charge of HBX-1 with a 15 foot
standoff distance. The test depth for both the charge and cylinder was 10 feet. The peak
pressure generated by the charge was 4163 psi. The calculated peak pressure pulse using the

exponential equation was 4807 psi.

B. PHYSICAL CYLINDRICAL SHELL MODEL

The test specimen was an instrumented aluminum cylinder. Its shell was constructed
of 6061-T6 aluminum with a 12 inch diameter, 42 inch length, and 1/4 inch thickness. The
stiffeners were of the same aluminum material with a 1/4 inch thick. The material properties
were elastic modulus 10,800 ksi, Poisson's ratio 0.33, and yield strength 40.0 ksi. The end
plate material was 1.0 inch aluminum. The aluminum was treated as a kinematic/isotropic
elastic plastic with no strain rate sensitivity.

A total of 18 strain gages were attached as shown in Figure 44 for the side-on
underwater explosion test. These gages were positioned to measure both axial and
circumferential strains. Locations of strain gages were based on pre-test calculations to

determine critical deformation zones.

C. NELSON'S USA/DYNA3D MODEL

The following is the original three-dimensional ring stiffened finite cylindrical model
used by Nelson(1992). A 1/2 symmetric cylindrical model 42 inches in length, 12 inches in
diameter with a single stiffener placed at the midpoint. The shell and stiffener material is

modeled as 6061-T6 aluminum, an kinematic/isotropic elastic-plastic material with an elastic
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modulus of 10800 ksi, a Poisson's ratio of 0.33, and a yield stress of 40 ksi with a shell

thickness of 1/4 inches. The endplate material is 1 inch aluminum.

3
N
N
o

8

ATA: Axial strain at gage location A and radial position 1.
A1C: Hoop strain at gage location A and radial position 1.
A2A: Axial strain at gage location A and radial pasition 2.
A2C: Hoop strain at gage location A and radial position 2.
B1A: Axial strain at gage location B and radial pasition 1.
B1C: Haoop strain at gage location B and radial position 1.
B2A: Axial strain at gage location B and radial position 2.
B2C: Hoop strain at gage location B and radial position 2.
B3A: Axial strain at gage location B and radial position 3.
B3C: Hoop strain at gage location B and radial position 3.
D2A: Axiat strain at gage location D and radial position 2.
D2C: Hoop strain at gage location D and radiat position 2.
D3A: Axial strain at gage location D and radial position 3.
D3C: Hoop strain at gage location D and radial position 3.
E1A: Auxial strain at gage location E and radial position 1.
E1C: Hoop strain at gage location E and radial position 1.
E2A: Axial strain at gage location E and radial position 2.
E2C: Hoop strain at gage location E and radial position 2.

Figure 44. Instrumentation Locations for Nelson's Model.
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1. Nelson's Perfect Model Half
Nelson's model had to be alter to reproduce the similar deformation response of the
actual cylinder. A 0.86 reduction to the nominal thickness was used for elements in the top

of the model. This resulted in the deformation pattern as shown in Figure 45.
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Figure 45. Nelson's 1/2 Model Deformation plot, view of top of cylinder for 1.48
msec.

D. NELSON'S IMPERFECT MODEL

Nelson's Modal Imperfection Model incorporated the optimized combined material,
radial and axial imperfections into the mesh algorithm. Both imperfection cases with and
without random phase shift were evaluated. Both models uses the combined material
imperfection distribution that consists of the superposition of the 5 percent elastic modulus,
5 percent density variation, 5 percent yield strength, and 5 percent tangential hardening. The
axial imperfection used in this distribution is the 1/2 axial modal amplitude. The initial modal

imperfections distribution introduced into the Nelson half model are only the even mode
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shapes. The even mode shapes of the first ten modal imperfections is a limitation due to the

geometry of the half model.

1. Nelson's Material, Radial and Axial Imperfections with Random
Phase Shift (Nelmtlimpp)

Deformation analysis was conducted using longitudinal deformation plots as used
with the prior analysis. Hoop and axial strains were analyzed for strategic locations around
the front and top of the cylindrical surface. From Figure 44 the locations that were analyzed
were points B1, A2, and D2. Of the 18 strain gages placed on the test specimen half failed
on impact of the pressure pulse. Several other strain gages provided useful data only between
0.25 to one msec.

Axial and hoop strain time histories are provided for points BIA and B1C which are
located 5.45 inches to the right from centerline. The longitudinal deformation plot is provided
for time 1.4796 msec. The original Ntlmtlimpp provided a deformation response of severe
crumpling and buckling in the back, symmetric with either side of centerline and the dishing
effects in the four end corners of the front side. Unfortunately as shown in, Figure 46 the
actual deformation occurs at the top. Nelson (1992) reasoned this occurrence as possibly
some inadvertent stress concentrations placed in the top of the cylinder during fabrication,
storage or handling. A second analysis was conducted with a 90 degree shift in modal
imperfections to adjust for these known stress concentrations. The deformations provided
in Figures 47 and 48 show an excellent similarity to the actual deformation. The
deformations are located in the correct geometric positions and with approximately the proper
amplitudes.

The axial and hoop strain time histories at the B1A and BI1C for experimental,
numerical and perfect cases are provided in Figure 49. This plot clearly shows the that the
numerical hoop strain closely predicts that of the experimental hoop strain during the critical
first 3 msec after detonation. The longitudinal strain shows the numerical predication is not
as close as the hoop strain but still reasonable for the first 3 msec. Hoop and axial strain gage

information from A2 and D2 provided incomplete data for the 3 msec and will not be
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provided. The data was in close agreement with the hoop strain until wire rupture at 1/2
msec. The longitudinal strain provided good to average data correlation with numerical

results.

Figure 46. Damage Cylinder Subjected to Side-on Attack (Charge Location to
Right of Cylinder.
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Figure 47. Nelson's Material, Radial, and Axial Imperfection with Random Phase
Shift: (a) Deformation plot with charge axis directly in fromt
(b) Deformation plot looking at backside
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Figure 48. Nelson's Material, Radial, and Axial Imperfection with Random Phase
Shift: (a) Deformation plot from top of cylinder (b) Deformation plot
from bottom of cylinder
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Figure 49. Nelson's Material, Radial, and Axial Imperfections with Random Phase
Shift: Circumferential and Longitudinal Strain plots at B1A and B1C.
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2. Nelson's Material, Radial and Axial Imperfections (Nelmtlimp)

Deformation analysis was conducted using longitudinal deformation plots as used
with the prior analysis. Hoop and axial strains were analyzed for the same strategic locations
around the front and top of the cylindrical surface as for the Nelmtlimpp case.

Axial and hoop strain time histories are provided for points B1A and B1C which are
located 5.45 inches to the right from centerline. The longitudinal deformation plot is
provided for time 1.4796 msec. The deformation plots provided in Figure 50, show even
a more exact similarity to the actual deformation.

The axial and hoop strain time histories at the BIA and B1C for experimental,
numerical, and perfect are provided in Figure 51. This plot clearly shows the that the
numerical hoop strain generally predicts that of the experimental hoop strain during the
critical first 9 msec after detonation. This plot clearly shows the Nelmtlimp case provides
better correlation than that of the perfect case. The longitudinal strain shows the numerical
predication is not as close as the hoop strain but still reasonable for the first 9 msec. Despite
data correlations of strain histories of experimental to numerical Nelson reasoned that the
post-processor strain time histories can be misleading because the plot continues generating

data points even after an element has reached failure strain criteria.
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Figure 51. Nelson's Material, Radial, and Axial Imperfections: Circumferential and
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V. DEFORMATION ANALYSIS ON MULTIPLE STIFFENED
CYLINDRICAL SHELLS

The analysis of cylindrical shells in the prior USA/DYNA3D models has been in the
area of finite cylindrical shell with stiffeners. The number of stiffeners used were either one
centerline by Nelson's half model and two equally spaced by Hooker's half model. In both
cases the models were 12 inch diameter cylinder 42 inches long made of mild steel with HY-
80 or 100 endplates. The question arises if a larger model with multiple stiffeners subjected

to an underwater explosion will behave with similar responses.

A. PHYSICAL MODEL

The ONR cylinder is a 1/12 scale reproduction of a submarine hull developed by the
Naval Surface Warfare Center with the purpose of collecting experimental data on
deformation and dynamic responses. The ONR cylinder has a diameter of 33.625 inches
Jength 0f 253.125 inches and a shell thickness of 0.1875 inches. There are six evenly spaced
deep frame stiffeners that are 2 inches thick and 4.125 inches wide. There are also 40 shallow
frame stiffeners equally spaced that are 0.25 inches thick and 1.25 inches wide. The shell,
endplates, and deep frames are made of mild steel while the deep frames are constructed of

HTS steel.

B. ONR MODEL

The ONR model was developed in the same manner as earlier models. Its notable
exception isthatitis a three-dimensional multiple stiffened finite cylindrical shell half model
as shown in Figure 52. It uses 2064 nodes and 1080 wet elements with the same
kinematic/isotropic elastic plastic mild steel parameters that was used before. It was
subjected to an underwater explosion of HBX-1 270 pound charge at a standoff distance of
15 feet that produced a peak pressure pulse of 8530 psi.

The two different cases that were analyzed were the perfect model and combined

imperfection model with random phase shift. The optimized combined modal imperfection
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distribution was integrated into the finite element mesh algorithm in the same manner as in
previous models.

The deformation analysis was also conducted with axial and longitudinal deformation
plots, von Mises contour and effective plastic strain plots.

The longitudinal deformation plot, Figure 53 shown for the shock induced pulse at
time 1.9875 msec for both perfect and imperfect models with a displacement scale factor of
two. This figure shows the pronounced buckling or pinching around the major stiffeners in
each model due to the added stiffness provided by the deep frame stiffeners. There is also
distinguishable ripples between the extent of crumpling of the minor or shallow stiffeners in
both cases. The noticeable difference between the two models is the more pronounced
dishing between the stiffeners in the combine imperfection model as compared to the perfect
model smoother appearance.

A comparison of the maximum von Mises stresses between ONR perfect and
combine imperfect shows a 1.1 percent greater difference within the first msec. A similar
comparison between the two models show a 5.3 percent greater difference after three msec
after impact.

The effective plastic strain contour plot has the typical similar appearance to the
model perfect. A comparison of the effective plastic strains between the two cases shows

a 19 percent greater difference within the first msec after impact.
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(a) ONR Perfect Model

(b) ONR Combined Imperfection Model

Figure 53. Model ONR Perfect versus Combine Imperfect: Longitudinal
Deformation plot at 1.9875: (a) Perfect ONR model (b) ONR
Combined Imperfections
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VI. CONCLUSIONS AND RECOMMENDATIONS

Predicting the dynamic and deformation response of a cylindrical shell subjected to
an underwater explosion has a great many complex variables. Initial geometric and material
imperfections are part of those complex variables that make numerical analysis of
complicated cylindrical structural systems difficult to simulate. Introducing an initial modal
imperfections into the numerical analysis significantly reduces the effects of these
imperfections on the cylindrical model. As shown by the comparisons of the numerical to
experimental data of the Nelson's model this has greatly increased the ability to numerically

predict deformations and dynamic responses.

A. IMPERFECTION SENSITIVITY ANALYSIS

The geometric, radial and axial modal imperfections were analyzed independently as
well as combined for random and non-random phase shift cases. The analysis of the eight
modal imperfection cases used the following set of data: hoop and axial strains , axial and
longitudinal deformation plots, maximum von Mises stresses, and the effective plastic strains.
After comparing the individual modal imperfection data to the perfect model it was
determined that the radial imperfections dominated the dynamic response of cylindrical
shells to within two percent. These results would concur with prior theoretical research that
neglecting the axial imperfections due to the slight variations in the axial directions would not
influence the results to within engineering accuracy.

The material imperfections that were introduced into the mesh algorithm were also
analyzed. The same above procedure was used to compare the material imperfection versus
the perfect model. The results were very similar to those of the perfect model. The elastic
modulus and variation in density probably can not be increase past the 5 percent that was
used in this analysis due the homogeneous/isotropic nature of the material. This research has
established that the material imperfection affected the dynamic response less than 1/2 percent.
The variation in elastic modulus may be more significant in the dynamic response in the elastic

region. The variation of yield strength was determined to be slightly sensitive in the plastic
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region to the magnitude of dynamic response and probably is only capable of 1 to 2 percent
difference. The tangential hardening modulus is a property that only slightly affects the

dynamic response in the plastic region and is limited to about 1 to 2 percent.

B. RECOMMENDATIONS

The significance of using the proper initial modal imperfection can not be
overemphasized. This is important because the deformation or actual damage will follow
this progression though to ultimate failure. Kirkpatrick (1989) specifically stated that the
output of the dynamic and deformation response is only as accurate as the actual initial
imperfection distribution. This means a knowledge of fabrication or machine process would
at least provide a rough estimate at an initial imperfection distribution.

The following recommendations are made for further study:

1. Investigate the ability to implement material and geometric imperfections in
other USA/DYNA3D elements like beam or brick elements and analyze the
differences between those of the shell elements.

2. Fabricate a cylindrical shell and perform an imperfection sensitivity analysis.
Compare actual three-dimensional mesh of cylinder to the combined imperfection
distribution. Perform UNDEX test and compare numerical to experimental UNDEX
data.

3. Perform combined imperfection analysis with a full model using greater
number than 1500 wet elements. This would reduce the mesh size and use a

summation of the first 50 even and odd modal shapes could be analyzed.

In conclusion there is a significant effect by geometric and material imperfections on
the dynamic and deformation response of cylindrical shells subjected to underwater
explosions. These initial geometric and material imperfections provide a far more realistic
representation of the physical system of the cylindrical shell and will provide a more accurate

prediction of damage and deformation of structures due to shock induced vibrations.
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APPENDIX A
INGRID INPUT FILES

The following input files consist of ingrid which creates the geometric model for
DYNA3D, flumas, augmat, and timint. The flumas, augmat and timint files provide input for
the USA program.

model . full
dn3d vec term 0.003 plti 10.0e-6 prti 1000

mat 1 type 3 e 2.9e+7 pr 0.3 ro 7.356e-4
etan S5.le+4 sigy 3.2e+4 shell quad 5 thick 0.060 endmat

¢ material 1 is the shell surface and is made of mild steel
¢ kinematic/isotropic elastic/plastic material 0.060 inch thick

mat 2 type 3 e 2.9e+7 pr 0.3 ro 7.356e-4
etan 5.02e+4 sigy 1.08e+5 shell quad 5 thick 0.25 endmat

¢ material 2 is the cylinder end plate and is made of HY-100
c material 1 is the shell surface and is made of mild st
¢ kinematic/isotropic elastic/plastic material 0.25 inch thick

mat 3 type 3 e 2.9e+7 pr 0.3 ro 7.356e-4
etan 5.le+4 sigy 3.2e+4 shell quad 5 thick 0.12 endmat

c material 3 is the shell stiffeners and is made of mild steel
¢ kinematic/isotropic elastic/plastic material 0.120 inch thick

led 1 2 0.0 0.0 1.0 0.0 ¢ load curve definitions
led 2 2 0.0 1l1l.6e-6 1.0 1l.6e-6

start ¢ construct shell surface
-1 6 -11 ;

1 22 ;

-1 6 -11 ;

-1 0 1

0.0 21.0

-1 0 1

alol1303 2 6.0

pri -1 -3 ; ; -1 -3; 1 -1.0 0.0 0.0 0.0 ¢ pressure load for part
mate 1 ¢ shell in made of material 1
end

¢ surface definitions

sd 1 cyli 0000106.0 ¢ outer shell radius
sd 2 ¢cyli 000010 [6.0%3/5]
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start
C con
1510 15 19 ; struct endplates

-1 ;

15 10 15 19 ;

-1 -1 011

0.0

-1 -1 011

pri ; -1 i 1 -1.0 0.0 0.0 0.0 ¢ pressure load for part

di 12045 ; 12045 ¢ delete corners for circle
Sle -2 -4; ; -2 -4; sd 2 ¢ form vertex filler for inter
gfi -1 -5; ; -1 -5 ; sd 1 ¢ form circular outer shape
mate 2 ¢ endplate in made of material
end
start

15 10 15 19 ;

'l;

15 10 15 19 ;

-1 -1 011

21.0

-1 -1011

pri ; -1 ; i -1.0 0.0 0.0 0.0

di 12045 ; ;12045

sfvi -2 -4; ; -2 -4; sd 2

sfi -1 -5; ; -1 -5 ; sd 1

mate 2
end
start ¢c. construct stiffeners
12 7 12 13 ;

-1 ;

12 7 12 13 ;

-1 -1 011

7.0

-1 -1011 . -

di 12045 ; ;120145 ¢ delete corners for circle for

construct stiffener from
end ¢ material 3

start
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FLUMAS DATA FOR MODEL FULL

sim.flu sim.geo dyna.pre sim.daa § FLUNAM GEONAM GRDNAM DAANAM
TTFT $ "PRTGMT PRTTRN PRTAMF CALCAM
TFFPF $ EIGMAF TWODIM HAFMOD QUAMOD
FEFTT S PCHCDS NASTAM STOMAS. STOINV
FFFF S FRWTFL FRWTGE FRWTGR FRESUR
FTFPF S RENUMB STOGMT ROTGEO ROTQUA
FFFF $ PRTCOE STRMAS SPHERE ROTSYM
FFFF $ OCTMOD CAVFLU FRWTFV INTCAV
DYNA $ MAINKY

0 1442 0 - 1360 $§ NSTRC NSTRF NGEN NGENF
000 S NBRA NCYL NCAV

9.356E-05 57600.0 $ RHO CEE

5 $ NVEC

6 $ NSRDI

6.0 0.0 1 105 1 $ RAD1 RAD2 JBEG JEND JINC
0.0 6.0 106 210 1

6.0 0.0 211 315 1

0.0 6.0 316 630 1

6.0 0.0 631 840 1

0.0 0.0 841 1360 1

0 $ NSORDER
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AUGMAT DATA FOR MODEL. FULL

dyna.pre sim.flu sim.geo sim.pre

FFFF

0.50
1442 4326 3 3

1
0 1 1360 1

r=d3dump

STRNAM
FRWTGE
FLUSKY
PRTGMT
MODTRN
LUMPFM
MAINKY
DAA2

NSTR

NSETLC
NDICOS

nnmnnnnnnnrntyy

TIME INTEGRATION DATA FOR MODEL FULL

sim.pre sim.pos
sim.rst

FF

FFF

TFF

M OUNORORRRMEMEOOO T i

$

nrnnnLrnrntnrnnnnnrrncNnrnn

PRENAM
RESNAM
BUBPUL
EXPWAV
HYPERB
NCHARG
HYDPRE
XC YC
SX sY
JPHIST
PNORM
DTHIST
CHGTYP
WEIGHT
NTINT
STRTIM
NSAVER
LOCBEG
FORWRT
DISPLA

92

POSNAM

FLUNAM
FRWTST
DAAFRM
PRTTRN
STRLCL

NSFR

JSTART

REFSEC FLUMEN

SPLINE VARLIN
EXPLOS DOUBDC

zC
Sz

SLANT CHGDEP

NCHGAL
DELTIM
NRESET

LOGRES LOCWRT

STBDAZ2

GEONAM
FRWTFL
SYMCON
PRTSTF
INTWAT

JSTOP

PACKET
VELIMP

NSTART

PRENAM
PLNWAV
DQFTAB
PRTAUG
CFADYN

NFTR

JINC




APPENDIX B

FORTRAN PROGRAM FOR MODIFYING INGRIDO FILES FOR
GEOMETRIC IMPERFECTIONS

The following fortran programs modify the ingrido input file and allow the implementing of

radial and axial imperfections into the mesh generator algorithm.

P Y 2 22 222222 X222 222 2R SR 2R R AR SRR R R RSl d)

* This program modifies the nodes of a file called *
* ingrido.old, which is the original input file for *
* USA/DYNA3D. This program writes the output to *
* impp.raw file that then can be imported back into *
* the ingrido file for modification. The program uses *
* separate random number generation for both radial and  *
* axial phase shift. *
********-k********i**t********************************************
* VARIABLE LIST: *
* *
* al - weighting factor for each modal imperfection *
* beta - angle from reference axis to axial postion of *
* node *
* da - change in axial position due to modal *
* imperfection *
* dr - change in radial postion due to modal *
* imperfection *
* h - thickness of shell *
* nodes- node number *
* m - number of nodes *
* r - radial position of node *
* phi - phase shift for each radial modal imperfection *
* si - phase shift for each axial modal imperfection *
* theta- angle from reference axis to radial position *
* of node *
* b'd - global x coordinate of node *
* Yy - global y coordinate of node *
* 2 - global z coordinate of node *
****************************t******t*****************************

Program Imperfection

double precision al,a2,a3,a4,a5,a6,a7,a8,as,all
double precision dril,dr2,dr3,dr4,dr5,dr6,dr7,drs
double precision dr9,dr10,dal,da2,da3,da4,das5,daé
double precision da7,da8,da9,dal0,h,pi,xx,yy,theta
double precision si(10),phi(10),xnew, znew,beta
double precision bil,b2,x,y,z,del,dr,da(22),ynum
integer idum, i, nodes,n

*********i*************i***********************i*t***************

* OPEN INPUT AND OUTPUT FILES *

*********i******ii****ii**tt************i******t*****************

open(10, file=’ingrido.old’)
open(15, file='impp.raw’)
h = 0.06

pi = 3.141592653589793
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kﬂﬁﬁﬁﬁﬁﬁﬁ*ﬁﬁQﬂﬁﬁﬁﬁQﬁ*Qﬁﬁﬁﬁﬁﬁﬁﬂ*ﬁ*Qﬁﬁﬁ#*#ﬁﬁﬁtﬁﬁﬂébﬂ#ﬁﬁﬁﬁﬁ*ﬁﬁﬁﬁﬁﬁﬁﬁ

* INPUT NUMBER OF NODES TO BE MODIFIED *
* AND WEIGHTING COEFFICIENTS OF THE FIRST TEN MODE SHAPES *

ﬁ**ﬂﬁﬁﬁﬁ#ﬂﬁﬁﬁ#ﬁﬁﬂﬁ#ﬁ*ﬁﬁéﬁQﬁﬁQ*ﬁﬂﬁ*ﬁ**ﬁ**ﬁtﬁﬁf*ﬁt*ﬁﬁﬁ*#ﬁ**ﬁﬁﬁ#ﬁﬁwﬁ

nodes = 889
do 20 i=1,42
read (10, *
20 continue )

al = 0.05*h
a2 = 0.05%h
a3 = 0.05*h
a4 = 0.05%h
a5 = 0.05*h
a6 = 0.05*%h
a7 = 2%h/49
a8 = 2+*h/64
a9 = 2%*h/81

al0 = 2*h/100
By S S 3 1 e s SRR R R R LA AL LA AL LA et bbbl

* CALL SUBROUTINES TC GENERATE RANDOM NUMBERS FOR #
* CALCULATING RANDOM PHASE SHIFT ANGLES #

ﬁﬁﬁﬁﬁﬁﬁﬁ*ﬁﬁﬂﬁQﬁﬁﬁﬁﬁﬂﬁﬂﬂtﬂﬁﬁﬁ*ﬁﬁ#*ﬁ*ﬁtﬁﬁﬁkﬁﬁ*ﬁ**ﬁt#ﬁﬁﬁ*ﬁﬁﬁﬁﬁﬁﬁ#ﬁﬁﬂ

do 30 i=1,10
idum = i
xx = ran2(idum)
yy = ran3(idum)
phi(i) = xx
si(i) = yy
30 continue

A 2 2 2 L 2 2 2 A AR R R LL LA L L LA
# DO LOOP TO READ INPUT DATA #

Etﬁﬁﬁ*ﬂﬁﬁtﬁﬁﬁﬁﬂﬁﬂﬁﬁ#ﬁ**ﬁﬁﬁﬁtﬂ*Qﬁﬁﬁ**Q*Q#ﬁﬁﬁ#ﬁﬁﬁ*&ﬁﬁ*ﬁﬁ@ﬁ&ﬁﬁﬁﬁﬁﬁﬁﬁ

do 100 i=1,nodes
read(10,*) n,bl,x,y,2,b2

Qﬁ#ﬁﬁﬂﬁ*Qwﬂﬂ*ﬁﬁﬁ#k&*ﬁﬁﬁbﬁﬁ*ﬁﬁ&ﬁﬁﬁﬁﬁﬁﬁﬁhﬁﬁﬁﬂ**ﬁﬂﬁﬁiﬂﬁ#ﬂt*ﬁﬂﬁﬂﬁﬁﬂﬁﬁ

* CALCUATE RADIUS OF NODE POSITION *
* THEN CALCULATE THE ANGLE FROM THE REFERENCE AXIS TO THE *
® NODE POINTS; beta and theta ®

phhthbE ROy

*Qﬁﬂﬁtﬁﬁﬂtﬁﬁﬁﬁﬁﬁﬂﬁﬁﬂ*ﬁﬁtﬂﬁﬁtQﬁﬁﬁﬁﬁﬁﬁ*ﬁﬁﬁﬁﬁﬁ***ﬁkﬂ&

r= dsgrt(x®x + z*%z)
beta = (piry)/21

if (dabs(x) .lt. 0.001) then

if (z .gt. 0.0) then
theta= 0.0
else
thetas pi
endif
else

thetas datan(x/z)
if (z .lt. 0.0) then
theta= theta + pi
endif
endif

94




'tifﬂ***f.*fi*'tiﬁ'.*.'.**'*.,'**g*****ﬁt'*tﬁﬁ*iiit*i!ﬁﬁ*’ﬁ**iﬁtt

* MODIFY THE NODE POSITIONS USING THE FIRST TEN MODE *
* SHAPES IN BOTH RADIAL AND AXIAL DIRECTIONS *

tttii'tfit'iiittittttfﬁtiiQtitttt*ﬁttf*‘f*'**iiiitiit_ﬁiiii'iiﬁttt

drl = a1l * dcos(theta +-2.0*pi*phi(1))

dr2 = a2 * dcos(2.0 * theta + 2.0*pi*phi(2}))
dr3 = a3 * dcos(3.0 * theta + 2.0*pi*phi(3))
dr4 = a4 * dcos(4.0 * theta + 2.0*pi*phi(4))
drS = a5 * dcos(5.0 * theta + 2.0*pi*phi(5))
dré = a6 * dcos(6.0 * theta + 2.0*pi*phi(6))
dr7 = a7 * dcos(7.0 * theta + 2.0*pi*phi(7))
dr8 = a8 * dcos(8.0 * theta + 2.0*pi*phi (8))
dr9 = a9 * dcos(9.0 * theta + 2.0*pi*phi(9))

dr10 = al0 * dcos(10.0 * theta + 2.0*pi*phi(10))

dal = 0.25 * al * dcos(beta + 2.0*pi*si(1))

da2 = 0.25 * a2 * dcos(2.0 * beta + 2.0*pi*si(2))

da3 = 0.25 * a3 * dcos(3.0 * beta + 2.0*pi*si(3))

d4a4 = 0.25 * a4 * dcos(4.0 * beta + 2.0*pi*si(4))

das = 0.25 * a5 * dcos (5.0 * beta + 2.0*pi*si(5))

da6 = 0.25 * a6 * dcos(6.0 * beta + 2.0*pi*si(6))

da7 = 0.25 * a7 * dcos(7.0 * beta + 2.0*pi*si(7))

da8 = 0.25 * a8 * dcos(8.0 * beta + 2.0*pi*si(8))

da9 = 0.25 * a9 * dcos(9.0 * beta + 2.0*pi*si(9))
dal0 = 0.25 * al0 * dcos({10.0 *+ beta + 2.0*pi*si(10))

dr = drl+dr2+dr3+dr4+dr5+dr6+dr7+dr8+dr9+dr10
da(i) = dal+da2+da3+da4+da5+da6+da7+da8+d39+dalo

del = dr + dal(i)

**tti*****fiﬁt**tii***i****iit*tﬁ*t*t*****i****t*ii*t**t#*t’fﬁ*ﬁi

* CALCULATE THE CARTESIAN COORDINATES OF THE NODES *

****ttQitti******i**i**t*tt*ﬁitﬁ*tﬂ*iiiﬁ**tiﬁii*it'*t***ft*******

xnew = X - del * dsin(theta)
znew = z - del * dcos (theta)
X = Xnew
z = znew

*****itt**t**tii*t#i**itttﬁ*t**iiittt*ﬁ*tt*******ii**ift*it**ﬁ**t
* WRITE DATA TO TEMPORARY DATA FILE IMPP.RAW *

**t**t*i*i*i*ttttit**i*tt*ti*'ﬁf**i*iﬁ'ﬁ***if**fﬁﬁi*****ﬁi*i**iii

write(15,99) n,bl,x,y,2,b2
99 . format(ia,fs.0,3e20.13,fs.0)
100 continue

*ﬁ****titit***fi*t*i**i*i'**iiiiiitt#ti**fi**t**f***ﬁ**i*it*ﬁi***

* CLOSE INPUT AND OUTPUT FILES *

*ﬁt**i****fﬁii***ttti***iit**iit*i**tﬁ**iti*t*t*i*i*t*****it**t"*

close(10)
close (15)
stop
end

*it*********i't*it*i'-i*******f*f'ﬁ'ﬁt**i**ti*****t*****i****i*t***t

* SUBROUTINE FOR RANDOM NUMBER GENERATION *

t***it*i*t*i*i**i****i**********i***'t'kt***t*i**i'***ﬁt***tﬁ****f*
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APPENDIX C

FORTRAN PROGRAM FOR MODIFYING INGRIDO FILES FOR
MATERIAL IMPERFECTIONS

The following fortran programs modify the ingrido input file and allow the implementing of

material imperfections into the mesh generator algorithm.

YT 2222222222222 2 R R R Rt a s s Rz s 222 228 2 2
This program modifies the elements of a file called
ingrido.mtl, which has been modified for just the
element cards for DYNA3D input file. This program
randomly provides ten values that will be usged to
modify the material properties at that element. The
output in written into mimp.raw that then can be
imported back into the ingrido file for modification.

P Y 222222222222 S22 2 AR Rt st is s 2222222 2R 22 2 tE

VARIABLE LIST:

mtl - material type for a particular element

nl - node numbers associated with a element

nel - element number ’

num - number of data records to be read in from
from ingrido.mtl

*
*
*
*
*
*
*
*
*
»
*
*
*
*
*
wetel - number wet elements *
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

P Y Y Y Y S R 2 2222222222222 2 32 22 RS2 2 2222 R X222 2 i ad sl

Program Material Imperfections
real xx,vyy

integer i,idum,mtl,nl,n2,n3,n4,nel
dimension a, b, ¢,

Y A R R R 222 2 2222 R SR RS 22222222 2 AR R Rttt bl

* OPEN INPUT AND OUTPUT FILES *
N R R R R R R S S 2 2 S A R A L g b

open(10, file='ingrido.mtl’)
open (15, file='mimp.raw’)
h = 0.06

pi =-3.141592653589793

P 2 2 2 2 22222222222 2 22X S22 XX 222 22 2 AR R A X0ttt ald

* INPUT NUMBER OF WET ELEMENTS TO BE MODIFIED *

P R R 2 2 22222 R RS S 222222222 2 22 R 2 Rttt it

wetel= 840
num= 2*wetel

T I Yy 222222y 2222222 2R 2 222 22 2 2 A 2 A 0 R A0t bd

* CALL SUBROUTINES TO GENERATE RANDOM NUMBERS FOR *
* CALCULATING RANDOM MATERIAL TYPE FOR ELEMENTS *

JO R Y s R R R R 22222222222 22222 2222 R 2 R AR o sl
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idum=1
yy = ran2(idum)

do 100 i=1,num,2
read(10,*) nel, mtl, nl, n2, n3, n4
read{(10,*) a, b, ¢, d
idum= 1
xx= ran3 (idum)
mtl= 10*xx
mtl= int (mtl)
if (mtl .lt. 1) mtl= 1
if (mtl .eq. 2) mtl= 11
if (mtl .eqg. 3) mtl= 12

{etﬁ‘*‘b*#}‘:#*ﬁ‘*ﬁ#‘bﬁfrﬁ'******s&ﬁ‘.‘:*ﬁ**tt****ﬁ*ﬁ**‘ks’l*ﬁﬁ*****ﬁ*ﬁ**ﬁt’:*ﬁfrﬁ*fr

# WRITE DATA TO TEMPORARY DATA FILE MIMP.RAW *
B 2 22 2 LA LA LA L AR AR AR AR AR A h b bbb

write (15,300) nel, mtl, nl, n2, n3, né
write(15,400) a, b, c, d

100 continue
300 format(1x,3x,i4,3x,i2,4x,i4,4x,i4,4x,i4,4x,i4)
400 format(lx,E9.3,1x,E9.3,1x,E9.3,lx,E9.3)

*k*ﬁ*é*‘k****ﬁ**f:***ﬁ’*'ﬁ'****ﬁﬁ't*f:******s‘t*‘k**tk*ﬁﬁﬁ*ﬁ*ﬁﬁ**ﬁ**ﬁ**ﬁﬁﬁﬁ‘

* CLOSE INPUT AND OUTPUT FILES *

*fti\'*k*ﬁ'#'ﬁ'*ﬁ'ﬁ'k**-ﬁ‘:'ki‘z-fr**ﬂ'*ftﬁ'*ﬁ'f:'&'****‘kfr**ﬁ****ﬁ*ﬁ****ﬁiﬁ******ﬁﬁﬁ&ﬁﬁ-L'

close (10)
close (15)
close(20)
stop
end

*tﬁ****ﬁ**ﬁ****ﬁﬁ******#ﬁﬁﬁ*ﬁ*k*&***#ﬁ***********k*ﬁ**ﬁ*tk*t**ﬁﬁﬁ
* SUBROUTINE FOR RANDOM NUMBER GENERATION *

*s‘z*fz*ﬁ*k**ﬁ*t\'*i‘zft’b***‘k**ﬁﬁﬁﬁﬂﬁtﬂ'ﬁﬁ***ﬁ'ﬂ'**********ﬁ*'k##*t****ﬁﬁﬁ*ﬁﬁ
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APPENDIX D

Table of Data
Model time (msec)
0.0384 0.4896 0.9888 1.9888 2.9888

Perfect 32.07 35.18 37.88 40.66 4138
Rimp 32.08 35.26 37.76 40.90 43.67
Aimp 32.07 35.18 37.86 40.67 41.37
Imp 32.08 35.26 37.75 40.88 43.11
Rimpp 32.07 35.39 38.31 46.63 40.24
Aimpp 32.07 35.18 37.98 40.74 41.41
Impp 32.08 35.39 38.34 46.69 42.22
Mtl 32.08 35.18 37.88 40.66 41.39
Mtlimpp 32.08 35.40 38.34 46.71 42.19

Table 2. Maximum Von Mises Stresses for Modal Imperfections in (ksi).

Model time (msec)
0.2448 0.4896 0.9888 1.9888 2.9888

Perfect 0307 0652 1171 1761 .1894
Rimp .0307 .0647 1330 2659 2971
Aimp .0307 .0652 1168 1754 .1889
Imp .0307 0647 1327 2656 2967
Rimpp 0314 0676 1344 3406 3627
Aimpp .0307 0652 1187 1773 1907
Impp 0314 0677 1348 3404 3619
Mtl .0307 0652 1171 1766 1900
Mtlimpp 0314 0677 1349 3412 3630

Table 3. Maximum Effective Plastic Strain ( in/in).
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Model time (msec)
0.0384 0.4896 0.9888 1.9888 2.9888

Aimpp1/4 32.07 35.18 37.98 40.72 41.41
Aimpp1/2 32.07 35.18 37.99 40.74 41.43
Aimpp3/4 32.07 35.18 37.97 40.72 4141
Aimpp1/1 32.07 35.19 38.00 40.81 41.43
Mtldensity  32.08 35.19 37.96 40.73 41.42
Mtlyield2.5  32.46 35.54 38.19 40.92 41.62
Mtlyield5.0  32.86 35.89 38.69 41.52 41.94
Mtltang5.0  32.08 35.24 37.99 40.78 41.48

Table 4. Maximum Von Mises Stresses for Axial and Material Imperfections in
(ksi).

Model time (msec)
0.0384 0.4896 0.9888 1.9888 2.9888

Aimppl/4 .0307 0652 1187 1773 1907
Aimppl/2 .0307 0654 1190 1755 .1889
Aimpp3/4 .0307 0653 1187 1756 .1886
Aimpp1/1 .0307 0654 1191 1766 1896
Mitldensity .0307 0653 1171 1766 .1900
Mtlyield2.5 0311 0656 1185 1791 .1934
Mitlyield5.0  .0319 .0668 1199 1819 .1990
Mtltang5.0 0306 0652 1176 1773 1908

Table 5. Maximum Effective Plastic Strain for Axial and Material Imperfections in
(in/in).
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